Giáo Dục

Giải Toán 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)

Giải Toán 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo) là tài liệu vô cùng hữu ích, giúp các em học sinh lớp 9 có thêm nhiều tư liệu tham khảo, đối chiếu lời giải hay, chính xác.

Tài liệu được biên soạn chi tiết, chính xác và đầy đủ các bài tập trong sách giáo khoa Toán 9 trang 29, 30 giúp các em xem gợi ý giải các bài tập của bài 7 chương I. Vậy sau đây là nội dung chi tiết tài liệu, mời các bạn cùng theo dõi tại đây.

Giải bài tập Toán 9 trang 29, 30 tập 1

Bài 48 (trang 29 SGK Toán 9 Tập 1)

Khử mẫu của biểu thức lấy căn

sqrt{dfrac{1}{600}};,,sqrt{dfrac{11}{540}};,,sqrt{dfrac{3}{50}};,,sqrt{dfrac{5}{98}}; ,,sqrt{dfrac{(1-sqrt{3})^{2}}{27}}.

Gợi ý đáp án

+sqrt{dfrac{1}{600}}=dfrac{sqrt 1}{sqrt{600}}=dfrac{ 1}{sqrt{6.100}}=dfrac{1}{sqrt{6.10^2}}

=dfrac{ 1}{sqrt{6}.sqrt{10^2}}=dfrac{ 1}{10sqrt{6}}=dfrac{ 1.sqrt 6}{10.6}=dfrac{ sqrt 6}{60}

+sqrt{dfrac{11}{540}}=dfrac{sqrt{11}}{sqrt{540}}=dfrac{sqrt{11}}{sqrt{36.15}}

=dfrac{sqrt{11}}{sqrt{36}.sqrt{15}}=dfrac{sqrt{11}}{sqrt{6^2}.sqrt{15}}

=dfrac{sqrt{11}}{6sqrt{15}}=dfrac{sqrt{11}.sqrt{15}}{6.15}

=dfrac{sqrt{11.15}}{90}=dfrac{sqrt{165}}{90}.

+ sqrt{dfrac{3}{50}}=dfrac{sqrt 3}{sqrt{50}}=dfrac{sqrt 3}{sqrt{25.2}}=dfrac{sqrt{3}}{sqrt{25}.sqrt{2}}

=dfrac{sqrt{3}}{sqrt{5^2}.sqrt{2}}=dfrac{sqrt{3}}{5sqrt{2}}=dfrac{sqrt{3}.sqrt 2}{5.2}

=dfrac{sqrt{3.2}}{10}=dfrac{sqrt{6}}{10}

+ sqrt{dfrac{5}{98}}=dfrac{sqrt 5}{sqrt {98}}=dfrac{sqrt 5}{sqrt{49.2}}=dfrac{sqrt 5}{sqrt{49}sqrt{2}}

=dfrac{sqrt 5}{sqrt{7^2}.sqrt 2}=dfrac{sqrt 5}{7sqrt 2}=dfrac{sqrt 5 . sqrt 2}{7. 2}

=dfrac{sqrt {5. 2}}{14}=dfrac{sqrt{10}}{14}.

+sqrt{dfrac{(1-sqrt{3})^{2}}{27}}=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {27}}=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {9.3}}

=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {3^2.3}}=dfrac{|1-sqrt{3}|}{3sqrt {3}}

Vì 1< 3 Leftrightarrow sqrt 1 < sqrt 3 Leftrightarrow 1< sqrt 3 Leftrightarrow 1- sqrt 3 < 0

Leftrightarrow |1- sqrt 3|=-(1-sqrt 3)=-1 + sqrt 3 = sqrt 3 -1.

Do đó: dfrac{|1-sqrt{3}|}{3sqrt {3}}=dfrac{sqrt{3}-1}{3sqrt {3}}=dfrac{sqrt 3(sqrt{3}-1)}{9}=dfrac{3-sqrt 3}{9}.

Bài 49 (trang 29 SGK Toán 9 Tập 1)

Khử mẫu của biểu thức lấy căn

absqrt{dfrac{a}{b}};,,, dfrac{a}{b}sqrt{dfrac{b}{a}};,,, sqrt{dfrac{1}{b}+dfrac{1}{b^{2}}};,,, sqrt{dfrac{9a^{3}}{36b}};,,, 3xysqrt{dfrac{2}{xy}}.

Gợi ý đáp án

Theo đề bài các biểu thức đều có nghĩa.

+ Ta có

absqrt{dfrac{a}{b}}=absqrt{dfrac{a.b}{b.b}}=absqrt{dfrac{ab}{b^2}}=abdfrac{sqrt{ab}}{sqrt{b^2}}=abdfrac{sqrt{ab}}{left | b right |}.

*) Nếu b > 0 thì |b|=b Rightarrow abdfrac{sqrt{ab}}{left | b right |}=abdfrac{sqrt{ab}}{b}=asqrt{ab}.

*) Nếu b < 0 thì |b|=-bRightarrow abdfrac{sqrt{ab}}{left | b right |}=-abdfrac{sqrt{ab}}{b}=-asqrt{ab}.

+ Ta có:

dfrac{a}{b}sqrt{dfrac{b}{a}}=dfrac{a}{b}sqrt{dfrac{b.a}{a.a}}=dfrac{a}{b}sqrt{dfrac{ab}{a^2}}

=dfrac{a}{b}.dfrac{sqrt{ab}}{sqrt{a^2}}=dfrac{a}{b}.dfrac{sqrt{ab}}{|a|}=dfrac{asqrt{ab}}{b|a|}

*) Nếu a> 0 thì |a|=a Rightarrow dfrac{asqrt{ab}}{b|a|}=dfrac{asqrt{ab}}{ab}=dfrac{sqrt{ab}}{b} .

*) Nếu a<0 thì |a|=-a Rightarrow dfrac{asqrt{ab}}{b|a|}=-dfrac{asqrt{ab}}{ab}=-dfrac{sqrt{ab}}{b} .

+ Ta có:

sqrt{dfrac{1}{b}+dfrac{1}{b^2}}=sqrt{dfrac{b}{b^2}+dfrac{1}{b^2}}=sqrt{dfrac{b+1}{b^2}}

=dfrac{sqrt{b+1}}{sqrt{b^2}}=dfrac{sqrt{b+1}}{|b|}.

*) Nếu b> 0 thì |b|=b Rightarrow dfrac{sqrt{b+1}}{|b|}=dfrac{sqrt{b+1}}{b}.

*) Nếu -1le b < 0 thì |b|=-b Rightarrow dfrac{sqrt{b+1}}{|b|}=-dfrac{sqrt{b+1}}{b}.

+ Ta có:

sqrt{dfrac{9a^3}{36b}}=sqrt{dfrac{9}{36}}.sqrt{dfrac{a^3}{b}}=sqrt{dfrac{1}{4}}.sqrt{dfrac{a^3.b}{b.b}}

=dfrac{1}{2}.sqrt{dfrac{a^2.ab}{b^2}}=dfrac{1}{2}.dfrac{sqrt{a^2}.sqrt{ab}}{sqrt{b^2}}

=dfrac{1}{2}.dfrac{|a|sqrt{ab}}{|b|}=dfrac{|a|sqrt{ab}}{2|b|}.

*) Nếu thì |a|=a, |b| =b Rightarrow dfrac{|a|sqrt{ab}}{2|b|}=dfrac{asqrt{ab}}{2b}.

*) Nếu a < 0, b < 0 thì |a|=-a, |b| =-b Rightarrow dfrac{|a|sqrt{ab}}{2|b|}=dfrac{asqrt{ab}}{2b}.

(Chú ý: Theo đề bài sqrt{dfrac{9a^3}{36b}}có nghĩa nên a, b cùng dấu, do đó chỉ cần xét 2 trường hợp a, b cùng âm hoặc cùng dương).

+ Ta có:

3xysqrt{dfrac{2}{xy}}=3xy.sqrt{dfrac{2.xy}{xy.xy}}=3xy.dfrac{sqrt{2xy}}{sqrt{(xy)^2}}

=3xy.dfrac{sqrt{2xy}}{|xy|} =dfrac{3xy.sqrt{2xy}}{xy}=3sqrt{2xy}.

(Vì theo đề bài sqrt{dfrac{2}{xy}} có nghĩa nên )

Bài 50 (trang 30 SGK Toán 9 Tập 1)

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

dfrac{5}{sqrt{10}};,,, dfrac{5}{2sqrt{5}};,,, dfrac{1}{3sqrt{20}};,,, dfrac{2sqrt{2}+2}{5sqrt{2}};,,, dfrac{y+b.sqrt{y}}{b. sqrt{y}}.

Gợi ý đáp án

+ Ta có:

dfrac{5}{sqrt{10}}=dfrac{5.sqrt{10}}{sqrt{10}.sqrt{10}}=dfrac{5sqrt{10}}{(sqrt{10})^2}=dfrac{5sqrt{10}}{10}

=dfrac{5.sqrt{10}}{5.2}=dfrac{sqrt{10}}{2}.

+ Ta có:

dfrac{5}{2sqrt{5}}=dfrac{5.sqrt 5}{2sqrt 5.sqrt 5}=dfrac{5sqrt{5}}{2.(sqrt 5.sqrt 5)}=dfrac{5sqrt{5}}{2(sqrt 5)^2}

=dfrac{5sqrt 5}{2.5}=dfrac{sqrt 5}{2}.

+ Ta có:

dfrac{1}{3sqrt{20}}=dfrac{1.sqrt{20}}{3sqrt{20}.sqrt{20}}=dfrac{sqrt{20}}{3.(sqrt{20}.sqrt{20})}=dfrac{sqrt{20}}{3.(sqrt{20})^2}

=dfrac{sqrt{20}}{3.20}=dfrac{sqrt{2^2.5}}{60}=dfrac{2sqrt 5}{60}=dfrac{2sqrt 5}{2.30}=dfrac{sqrt 5}{30}.

+ Ta có:

dfrac{(2sqrt{2}+2)}{5.sqrt 2}=dfrac{(2sqrt 2+2).sqrt 2}{5sqrt 2. sqrt 2}=dfrac{2sqrt 2.sqrt 2+2.sqrt 2}{5.(sqrt 2)^2}

=dfrac{2.2+2sqrt 2}{5.2}=dfrac{2(2+sqrt 2)}{5.2}=dfrac{2+sqrt 2}{5}.

+ Ta có:

dfrac{y+bsqrt{y}}{bsqrt{y}}=dfrac{(y+bsqrt y).sqrt y}{bsqrt y .sqrt y}=dfrac{ysqrt y+bsqrt y.sqrt y}{b.(sqrt y)^2}

= dfrac{ysqrt y+b(sqrt y)^2}{by}=dfrac{ysqrt y+by}{by}

=dfrac{y(sqrt y+b)}{b.y}=dfrac{sqrt y+b}{b}.

Bài 51 (trang 30 SGK Toán 9 Tập 1)

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

dfrac{3}{sqrt{3}+1};,,,dfrac{2}{sqrt{3}-1};,,,dfrac{2+sqrt{3}}{2-sqrt{3}};,,,dfrac{b}{3+sqrt{b}};,,,dfrac{p}{2sqrt{p}-1}.

Gợi ý đáp án:

+ Ta có:

dfrac{3}{sqrt{3}+1}=dfrac{3(sqrt{3}-1)}{(sqrt{3}+1)(sqrt{3}-1)}=dfrac{3sqrt 3 - 3.1}{(sqrt 3)^2-1^2}

=dfrac{3sqrt 3 -3}{3-1}=dfrac{3sqrt{3}-3}{2}.

+ Ta có:

dfrac{2}{sqrt{3}-1}=dfrac{2(sqrt{3}+1)}{(sqrt{3}-1)(sqrt{3}+1)}=dfrac{2(sqrt 3 + 1)}{(sqrt 3)^2-1^2}

=dfrac{2(sqrt 3 + 1)}{3-1}=dfrac{2(sqrt{3}+1)}{2}=sqrt{3}+1.

+ Ta có:

dfrac{2+sqrt{3}}{2-sqrt{3}}=dfrac{(2+sqrt{3}).(2+sqrt 3)}{(2-sqrt{3})(2+sqrt{3})}=dfrac{(2+sqrt{3})^2}{2^2-(sqrt{3})^2}

=dfrac{2^2+2.2.sqrt 3+(sqrt{3})^2}{4-3}=dfrac{4+4sqrt 3+3}{1}=dfrac{(4+3)+4sqrt 3}{1}

=dfrac{7+4sqrt 3}{1}=7+4sqrt{3}.

+ Ta có:

dfrac{b}{3+sqrt{b}}=dfrac{b(3-sqrt{b})}{(3+sqrt{b})(3-sqrt{b})}

=dfrac{b(3-sqrt{b})}{3^2-(sqrt b)^2}=dfrac{b(3-sqrt{b})}{9-b};(bneq 9).

+ Ta có:

dfrac{p}{2sqrt{p}-1}=dfrac{p(2sqrt{p}+1)}{(2sqrt{p}-1)(2sqrt{p}+1)}

=dfrac{p(2sqrt{p}+1)}{(2sqrt{p})^2-1^2}=dfrac{p(2sqrt{p}+1)}{4p-1}=dfrac{2psqrt{p}+p}{4p-1}

Bài 52 (trang 30 SGK Toán 9 Tập 1)

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

dfrac{2}{sqrt{6}-sqrt{5}};,, dfrac{3}{sqrt{10}+sqrt{7}};,,, dfrac{1}{sqrt{x}-sqrt{y}};,,, dfrac{2ab}{sqrt{a}-sqrt{b}}.

Gợi ý đáp án

+ Ta có:

dfrac{2}{sqrt{6}-sqrt{5}}=dfrac{2(sqrt{6}+sqrt{5})}{(sqrt{6}-sqrt{5})(sqrt{6}+sqrt{5})}

=dfrac{2(sqrt{6}+sqrt{5})}{(sqrt{6})^2-(sqrt{5})^2}=dfrac{2(sqrt{6}+sqrt{5})}{6-5}

=dfrac{2(sqrt{6}+sqrt{5})}{1}=2(sqrt{6}+sqrt{5}).

+ Ta có:

dfrac{3}{sqrt{10}+sqrt{7}}=dfrac{3(sqrt{10}-sqrt{7})}{(sqrt{10}+sqrt{7})(sqrt{10}-sqrt{7})}

=dfrac{3(sqrt{10}-sqrt{7})}{(sqrt{10})^2-(sqrt{7})^2}=dfrac{3(sqrt{10}-sqrt{7})}{10-7}

=dfrac{3(sqrt{10}-sqrt{7})}{3}=sqrt{10}-sqrt{7}.

+ Ta có:

dfrac{1}{sqrt{x}-sqrt{y}}=dfrac{1.(sqrt{x}+sqrt{y})}{(sqrt{x}-sqrt{y})(sqrt{x}+sqrt{y})}

=dfrac{sqrt x + sqrt y}{(sqrt x)^2-(sqrt y)^2}=dfrac{sqrt{x}+sqrt{y}}{x-y}

+ Ta có:

dfrac{2ab}{sqrt{a}-sqrt{b}}=dfrac{2ab(sqrt{a}+sqrt{b})}{(sqrt{a}-sqrt{b})(sqrt{a}+sqrt{b})}

=dfrac{2ab(sqrt a+ sqrt b)}{(sqrt a)^2-(sqrt b)^2}=dfrac{2ab(sqrt{a}+sqrt{b})}{a-b}.

Giải bài tập toán 9 trang 30: Luyện tập

Bài 53 (trang 30 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa) :

a. sqrt{18(sqrt{2}-sqrt{3})^{2}};

b. absqrt{1+dfrac{1}{a^{2}b^{2}}}

c. sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}

d. dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}

Gợi ý đáp án

a. sqrt{18(sqrt{2}-sqrt{3})^{2}};

Ta có:

sqrt{18(sqrt{2}-sqrt{3})^{2}}=sqrt {18}.sqrt{(sqrt 2 - sqrt 3)^2}

=sqrt{9.2}.|sqrt{2}-sqrt{3}|=sqrt{3^2.2}.|sqrt{2}-sqrt{3}|

=3sqrt{2}.|sqrt{2}-sqrt{3}|=3sqrt{2}(sqrt{3}-sqrt{2})

=3sqrt {2.3}- 3(sqrt 2)^2

=3sqrt 6 -3.2=3sqrt{6}-6.

(Vì  2 < 3Leftrightarrow sqrt 2 < sqrt 3 Leftrightarrow sqrt 2 -sqrt 3 <0

Do đó: |sqrt 2 -sqrt 3|=-(sqrt 2 -sqrt 3)=-sqrt 2 +sqrt 3=sqrt 3-sqrt2).

b. absqrt{1+dfrac{1}{a^{2}b^{2}}}

Ta có:

absqrt{1+dfrac{1}{a^{2}b^{2}}}=absqrt{dfrac{a^2b^2}{a^2b^2}+dfrac{1}{a^2b^2}}=absqrt{dfrac{a^2b^2+1}{a^2b^2}}

=abdfrac{sqrt{a^2b^2+1}}{sqrt{a^2b^2}}=abdfrac{sqrt{a^2b^2+1}}{sqrt{(ab)^2}}

=abdfrac{sqrt{a^2b^2+1}}{|ab|}

Nếu ab > 0 thì |ab|=ab

Rightarrow abdfrac{sqrt{a^2b^2+1}}{|ab|}=abdfrac{sqrt{a^2b^2+1}}{ab}=sqrt{a^2b^2+1}.

Nếu ab < 0 thì |ab|=-ab

Rightarrow abdfrac{sqrt{a^2b^2+1}}{|ab|}=abdfrac{sqrt{a^2b^2+1}}{-ab}=-sqrt{a^2b^2+1}.

c. sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}

Ta có:

sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}=sqrt{dfrac{a.b}{b^{3}.b}+dfrac{a}{b^{4}}}=sqrt{dfrac{ab}{b^4}+dfrac{a}{b^4}}

=sqrt{dfrac{ab+a}{b^4}}=dfrac{sqrt{ab+a}}{sqrt{(b^2)^2}}=dfrac{sqrt{ab+a}}{|b^2|}=dfrac{sqrt{ab+a}}{b^2}.

(Vì với mọi b ne 0 nên |b^2|=b^2).

d. dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}

Ta có:

dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}=dfrac{(sqrt a)^2+sqrt{a}.sqrt b}{sqrt{a}+sqrt{b}}=dfrac{sqrt a (sqrt a+sqrt b)}{sqrt{a}+sqrt{b}}

=sqrt a.

Bài 54 (trang 30 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):

dfrac{2+sqrt{2}}{1+sqrt{2}};,,, dfrac{sqrt{15}-sqrt{5}}{1-sqrt{3}};,,,dfrac{2sqrt{3}-sqrt{6}}{sqrt{8}-2};

Gợi ý đáp án

* Ta có:

dfrac{2+sqrt{2}}{1+sqrt{2}}=dfrac{(sqrt 2)^2+ sqrt 2}{1+ sqrt 2}=dfrac{sqrt{2}(sqrt{2}+1)}{1+sqrt{2}}

=dfrac{sqrt 2(1+ sqrt 2)}{sqrt 2}=sqrt{2}.

Cách khác:

begin{array}{l} dfrac{{2+ sqrt 2 }}{{1 + sqrt 2 }} = dfrac{{left( {2 + sqrt 2 } right)left( {1 - sqrt 2 } right)}}{{left( {1 + sqrt 2 } right)left( {1 - sqrt 2 } right)}}\ = dfrac{{2.1 - 2sqrt 2 + sqrt 2 - {{left( {sqrt 2 } right)}^2}}}{{{1^2} - {{left( {sqrt 2 } right)}^2}}}\ = dfrac{{2 - 2sqrt 2 + sqrt 2 - 2}}{{1 - 2}}\ = dfrac{{ - sqrt 2 }}{{ - 1}} = sqrt 2 end{array}

Nhận xét: Cách làm thứ nhất phân tích tử thành nhân tử rồi rút gọn với mẫu đơn giản hơn cách thứ hai.

* Ta có:

dfrac{sqrt{15}-sqrt{5}}{1-sqrt{3}}=dfrac{sqrt{3.5}-sqrt{5.1}}{1-sqrt{3}}=dfrac{sqrt{5}.sqrt{3}-sqrt{5}.1}{1-sqrt{3}}

=dfrac{sqrt{5}(sqrt{3}-1)}{1-sqrt{3}}=dfrac{-sqrt{5}(1-sqrt{3})}{1-sqrt{3}}=-sqrt{5}.

+ Ta có:

dfrac{2sqrt{3}-sqrt{6}}{sqrt{8}-2}=dfrac{(sqrt 2)^2.sqrt 3-sqrt 6}{sqrt{4.2}- 2}

=dfrac{sqrt 2.(sqrt 2.sqrt 3)-sqrt 6}{2sqrt 2 -2}=dfrac{sqrt2.sqrt{6}-sqrt 6}{2(sqrt{2}-1)}

=dfrac{sqrt{6}(sqrt{2}-1)}{2(sqrt{2}-1)}=dfrac{sqrt{6}}{2}.

+ Ta có:

dfrac{a-sqrt{a}}{1-sqrt{a}}=dfrac{(sqrt a)^2-sqrt a .1}{1-sqrt a}=dfrac{sqrt{a}(sqrt{a}-1)}{1-sqrt{a}}

=dfrac{-sqrt{a}(1-sqrt{a})}{1-sqrt{a}}=-sqrt{a}.

+ Ta có:

dfrac{p-2sqrt{p}}{sqrt{p}-2}=dfrac{(sqrt p)^2-2.sqrt{p}}{sqrt{p}-2}=dfrac{sqrt{p}(sqrt{p}-2)}{sqrt{p}-2}=sqrt{p}.

Bài 55 (trang 30 SGK Toán 9 Tập 1)

Phân tích thành nhân tử (với a, b,x, y là các số không âm)

a. ab+bsqrt{a}+sqrt{a}+1

b, sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}}

Gợi ý đáp án

a. ab+bsqrt{a}+sqrt{a}+1

Ta có:

ab+bsqrt{a}+sqrt{a}+1=(ab+bsqrt{a})+(sqrt{a}+1)

=(ba+bsqrt{a})+(sqrt{a}+1)

=[(bsqrt a).sqrt a+ bsqrt a.1]+(sqrt a + 1)

=bsqrt{a}(sqrt{a}+1)+(sqrt{a}+1)

=(sqrt{a}+1)(bsqrt{a}+1).

b, sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}}

Ta có:

sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}}

=[(sqrt x)^3-(sqrt y)^3]+ (sqrt{x.xy}-sqrt{y.xy}) =(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2]

+ (sqrt{x}.sqrt{xy}-sqrt{y}.sqrt{xy})

=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2] + sqrt{xy}.(sqrt{x}-sqrt{y})

=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2+sqrt{xy}]

=(sqrt x-sqrt y).[(sqrt x)^2 + 2sqrt x.sqrt y+(sqrt y)^2] =(sqrt x-sqrt y).(sqrt x+sqrt y)^2.

Bài 56 (trang 30 SGK Toán 9 Tập 1)

a. 3sqrt{5};,,,2sqrt{6};,,,sqrt{29};,,, 4sqrt{2}

b. 6sqrt{2};,,, sqrt{38};,,,3sqrt{7};,,, 2sqrt{14}.

Gợi ý đáp án

Sắp xếp theo thứ tự tăng dần:

a. 3sqrt{5};,,,2sqrt{6};,,,sqrt{29};,,, 4sqrt{2}

Ta có:

left{ matrix{ 3sqrt 5 = sqrt {{3^2}.5} = sqrt {9.5} = sqrt {45} hfill cr 2sqrt 6 = sqrt {{2^2}.6} = sqrt {4.6} = sqrt {24} hfill cr 4sqrt 2 = sqrt {{4^2}.2} = sqrt {16.2} = sqrt {32} hfill cr} right.

Vì: 24 < 29 < 32 < 45 Leftrightarrow sqrt{24}<sqrt{29}<sqrt{32}<sqrt{45}

Leftrightarrow 2sqrt{6}<sqrt{29}< 4sqrt{2}< 3sqrt{5}

b. 6sqrt{2};,,, sqrt{38};,,,3sqrt{7};,,, 2sqrt{14}.

Vì: 38 < 56 < 63 <72Leftrightarrow sqrt{38}<sqrt{56}<sqrt{63}<sqrt{72}

Leftrightarrow sqrt{38}< 2sqrt{14}<3sqrt{7}< 6sqrt{2}

Bài 57 (trang 30 SGK Toán 9 Tập 1)

Hãy chọn câu trả lời đúng.

sqrt {25x} - sqrt {16x} = 9 khi x bằng

(A) 1;

(B) 3;

(C) 9;

(D) 81.

Hãy chọn câu trả lời đúng.

Gợi ý đáp án

Ta có:

sqrt{25x}-sqrt{16x}=9

sqrt{5^2.x}-sqrt{4^2.x}=9 Leftrightarrow 5sqrt{x}-4sqrt{x}=9

Leftrightarrow (5-4)sqrt{x}=9 Leftrightarrow sqrt{x}=9

Leftrightarrow (sqrt{x})^2=9^2 Leftrightarrow x=81

Chọn đáp án D. 81

Giải Toán 9 Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo) là tài liệu vô cùng hữu ích, giúp các em học sinh lớp 9 có thêm nhiều tư liệu tham khảo, đối chiếu lời giải hay, chính xác.

Tài liệu được biên soạn chi tiết, chính xác và đầy đủ các bài tập trong sách giáo khoa Toán 9 trang 29, 30 giúp các em xem gợi ý giải các bài tập của bài 7 chương I. Vậy sau đây là nội dung chi tiết tài liệu, mời các bạn cùng theo dõi tại đây.

Giải bài tập Toán 9 trang 29, 30 tập 1

Bài 48 (trang 29 SGK Toán 9 Tập 1)

Khử mẫu của biểu thức lấy căn

sqrt{dfrac{1}{600}};,,sqrt{dfrac{11}{540}};,,sqrt{dfrac{3}{50}};,,sqrt{dfrac{5}{98}}; ,,sqrt{dfrac{(1-sqrt{3})^{2}}{27}}.

Gợi ý đáp án

+sqrt{dfrac{1}{600}}=dfrac{sqrt 1}{sqrt{600}}=dfrac{ 1}{sqrt{6.100}}=dfrac{1}{sqrt{6.10^2}}

=dfrac{ 1}{sqrt{6}.sqrt{10^2}}=dfrac{ 1}{10sqrt{6}}=dfrac{ 1.sqrt 6}{10.6}=dfrac{ sqrt 6}{60}

+sqrt{dfrac{11}{540}}=dfrac{sqrt{11}}{sqrt{540}}=dfrac{sqrt{11}}{sqrt{36.15}}

=dfrac{sqrt{11}}{sqrt{36}.sqrt{15}}=dfrac{sqrt{11}}{sqrt{6^2}.sqrt{15}}

=dfrac{sqrt{11}}{6sqrt{15}}=dfrac{sqrt{11}.sqrt{15}}{6.15}

=dfrac{sqrt{11.15}}{90}=dfrac{sqrt{165}}{90}.

+ sqrt{dfrac{3}{50}}=dfrac{sqrt 3}{sqrt{50}}=dfrac{sqrt 3}{sqrt{25.2}}=dfrac{sqrt{3}}{sqrt{25}.sqrt{2}}

=dfrac{sqrt{3}}{sqrt{5^2}.sqrt{2}}=dfrac{sqrt{3}}{5sqrt{2}}=dfrac{sqrt{3}.sqrt 2}{5.2}

=dfrac{sqrt{3.2}}{10}=dfrac{sqrt{6}}{10}

+ sqrt{dfrac{5}{98}}=dfrac{sqrt 5}{sqrt {98}}=dfrac{sqrt 5}{sqrt{49.2}}=dfrac{sqrt 5}{sqrt{49}sqrt{2}}

=dfrac{sqrt 5}{sqrt{7^2}.sqrt 2}=dfrac{sqrt 5}{7sqrt 2}=dfrac{sqrt 5 . sqrt 2}{7. 2}

=dfrac{sqrt {5. 2}}{14}=dfrac{sqrt{10}}{14}.

+sqrt{dfrac{(1-sqrt{3})^{2}}{27}}=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {27}}=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {9.3}}

=dfrac{sqrt{(1-sqrt 3)^2}}{sqrt {3^2.3}}=dfrac{|1-sqrt{3}|}{3sqrt {3}}

Vì 1< 3 Leftrightarrow sqrt 1 < sqrt 3 Leftrightarrow 1< sqrt 3 Leftrightarrow 1- sqrt 3 < 0

Leftrightarrow |1- sqrt 3|=-(1-sqrt 3)=-1 + sqrt 3 = sqrt 3 -1.

Do đó: dfrac{|1-sqrt{3}|}{3sqrt {3}}=dfrac{sqrt{3}-1}{3sqrt {3}}=dfrac{sqrt 3(sqrt{3}-1)}{9}=dfrac{3-sqrt 3}{9}.

Bài 49 (trang 29 SGK Toán 9 Tập 1)

Khử mẫu của biểu thức lấy căn

absqrt{dfrac{a}{b}};,,, dfrac{a}{b}sqrt{dfrac{b}{a}};,,, sqrt{dfrac{1}{b}+dfrac{1}{b^{2}}};,,, sqrt{dfrac{9a^{3}}{36b}};,,, 3xysqrt{dfrac{2}{xy}}.

Gợi ý đáp án

Theo đề bài các biểu thức đều có nghĩa.

+ Ta có

absqrt{dfrac{a}{b}}=absqrt{dfrac{a.b}{b.b}}=absqrt{dfrac{ab}{b^2}}=abdfrac{sqrt{ab}}{sqrt{b^2}}=abdfrac{sqrt{ab}}{left | b right |}.

*) Nếu b > 0 thì |b|=b Rightarrow abdfrac{sqrt{ab}}{left | b right |}=abdfrac{sqrt{ab}}{b}=asqrt{ab}.

*) Nếu b < 0 thì |b|=-bRightarrow abdfrac{sqrt{ab}}{left | b right |}=-abdfrac{sqrt{ab}}{b}=-asqrt{ab}.

+ Ta có:

dfrac{a}{b}sqrt{dfrac{b}{a}}=dfrac{a}{b}sqrt{dfrac{b.a}{a.a}}=dfrac{a}{b}sqrt{dfrac{ab}{a^2}}

=dfrac{a}{b}.dfrac{sqrt{ab}}{sqrt{a^2}}=dfrac{a}{b}.dfrac{sqrt{ab}}{|a|}=dfrac{asqrt{ab}}{b|a|}

*) Nếu a> 0 thì |a|=a Rightarrow dfrac{asqrt{ab}}{b|a|}=dfrac{asqrt{ab}}{ab}=dfrac{sqrt{ab}}{b} .

*) Nếu a<0 thì |a|=-a Rightarrow dfrac{asqrt{ab}}{b|a|}=-dfrac{asqrt{ab}}{ab}=-dfrac{sqrt{ab}}{b} .

+ Ta có:

sqrt{dfrac{1}{b}+dfrac{1}{b^2}}=sqrt{dfrac{b}{b^2}+dfrac{1}{b^2}}=sqrt{dfrac{b+1}{b^2}}

=dfrac{sqrt{b+1}}{sqrt{b^2}}=dfrac{sqrt{b+1}}{|b|}.

*) Nếu b> 0 thì |b|=b Rightarrow dfrac{sqrt{b+1}}{|b|}=dfrac{sqrt{b+1}}{b}.

*) Nếu -1le b < 0 thì |b|=-b Rightarrow dfrac{sqrt{b+1}}{|b|}=-dfrac{sqrt{b+1}}{b}.

+ Ta có:

sqrt{dfrac{9a^3}{36b}}=sqrt{dfrac{9}{36}}.sqrt{dfrac{a^3}{b}}=sqrt{dfrac{1}{4}}.sqrt{dfrac{a^3.b}{b.b}}

=dfrac{1}{2}.sqrt{dfrac{a^2.ab}{b^2}}=dfrac{1}{2}.dfrac{sqrt{a^2}.sqrt{ab}}{sqrt{b^2}}

=dfrac{1}{2}.dfrac{|a|sqrt{ab}}{|b|}=dfrac{|a|sqrt{ab}}{2|b|}.

*) Nếu thì |a|=a, |b| =b Rightarrow dfrac{|a|sqrt{ab}}{2|b|}=dfrac{asqrt{ab}}{2b}.

*) Nếu a < 0, b < 0 thì |a|=-a, |b| =-b Rightarrow dfrac{|a|sqrt{ab}}{2|b|}=dfrac{asqrt{ab}}{2b}.

(Chú ý: Theo đề bài sqrt{dfrac{9a^3}{36b}}có nghĩa nên a, b cùng dấu, do đó chỉ cần xét 2 trường hợp a, b cùng âm hoặc cùng dương).

+ Ta có:

3xysqrt{dfrac{2}{xy}}=3xy.sqrt{dfrac{2.xy}{xy.xy}}=3xy.dfrac{sqrt{2xy}}{sqrt{(xy)^2}}

=3xy.dfrac{sqrt{2xy}}{|xy|} =dfrac{3xy.sqrt{2xy}}{xy}=3sqrt{2xy}.

(Vì theo đề bài sqrt{dfrac{2}{xy}} có nghĩa nên )

Bài 50 (trang 30 SGK Toán 9 Tập 1)

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

dfrac{5}{sqrt{10}};,,, dfrac{5}{2sqrt{5}};,,, dfrac{1}{3sqrt{20}};,,, dfrac{2sqrt{2}+2}{5sqrt{2}};,,, dfrac{y+b.sqrt{y}}{b. sqrt{y}}.

Gợi ý đáp án

+ Ta có:

dfrac{5}{sqrt{10}}=dfrac{5.sqrt{10}}{sqrt{10}.sqrt{10}}=dfrac{5sqrt{10}}{(sqrt{10})^2}=dfrac{5sqrt{10}}{10}

=dfrac{5.sqrt{10}}{5.2}=dfrac{sqrt{10}}{2}.

+ Ta có:

dfrac{5}{2sqrt{5}}=dfrac{5.sqrt 5}{2sqrt 5.sqrt 5}=dfrac{5sqrt{5}}{2.(sqrt 5.sqrt 5)}=dfrac{5sqrt{5}}{2(sqrt 5)^2}

=dfrac{5sqrt 5}{2.5}=dfrac{sqrt 5}{2}.

+ Ta có:

dfrac{1}{3sqrt{20}}=dfrac{1.sqrt{20}}{3sqrt{20}.sqrt{20}}=dfrac{sqrt{20}}{3.(sqrt{20}.sqrt{20})}=dfrac{sqrt{20}}{3.(sqrt{20})^2}

=dfrac{sqrt{20}}{3.20}=dfrac{sqrt{2^2.5}}{60}=dfrac{2sqrt 5}{60}=dfrac{2sqrt 5}{2.30}=dfrac{sqrt 5}{30}.

+ Ta có:

dfrac{(2sqrt{2}+2)}{5.sqrt 2}=dfrac{(2sqrt 2+2).sqrt 2}{5sqrt 2. sqrt 2}=dfrac{2sqrt 2.sqrt 2+2.sqrt 2}{5.(sqrt 2)^2}

=dfrac{2.2+2sqrt 2}{5.2}=dfrac{2(2+sqrt 2)}{5.2}=dfrac{2+sqrt 2}{5}.

+ Ta có:

dfrac{y+bsqrt{y}}{bsqrt{y}}=dfrac{(y+bsqrt y).sqrt y}{bsqrt y .sqrt y}=dfrac{ysqrt y+bsqrt y.sqrt y}{b.(sqrt y)^2}

= dfrac{ysqrt y+b(sqrt y)^2}{by}=dfrac{ysqrt y+by}{by}

=dfrac{y(sqrt y+b)}{b.y}=dfrac{sqrt y+b}{b}.

Bài 51 (trang 30 SGK Toán 9 Tập 1)

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

dfrac{3}{sqrt{3}+1};,,,dfrac{2}{sqrt{3}-1};,,,dfrac{2+sqrt{3}}{2-sqrt{3}};,,,dfrac{b}{3+sqrt{b}};,,,dfrac{p}{2sqrt{p}-1}.

Gợi ý đáp án:

+ Ta có:

dfrac{3}{sqrt{3}+1}=dfrac{3(sqrt{3}-1)}{(sqrt{3}+1)(sqrt{3}-1)}=dfrac{3sqrt 3 - 3.1}{(sqrt 3)^2-1^2}

=dfrac{3sqrt 3 -3}{3-1}=dfrac{3sqrt{3}-3}{2}.

+ Ta có:

dfrac{2}{sqrt{3}-1}=dfrac{2(sqrt{3}+1)}{(sqrt{3}-1)(sqrt{3}+1)}=dfrac{2(sqrt 3 + 1)}{(sqrt 3)^2-1^2}

=dfrac{2(sqrt 3 + 1)}{3-1}=dfrac{2(sqrt{3}+1)}{2}=sqrt{3}+1.

+ Ta có:

dfrac{2+sqrt{3}}{2-sqrt{3}}=dfrac{(2+sqrt{3}).(2+sqrt 3)}{(2-sqrt{3})(2+sqrt{3})}=dfrac{(2+sqrt{3})^2}{2^2-(sqrt{3})^2}

=dfrac{2^2+2.2.sqrt 3+(sqrt{3})^2}{4-3}=dfrac{4+4sqrt 3+3}{1}=dfrac{(4+3)+4sqrt 3}{1}

=dfrac{7+4sqrt 3}{1}=7+4sqrt{3}.

+ Ta có:

dfrac{b}{3+sqrt{b}}=dfrac{b(3-sqrt{b})}{(3+sqrt{b})(3-sqrt{b})}

=dfrac{b(3-sqrt{b})}{3^2-(sqrt b)^2}=dfrac{b(3-sqrt{b})}{9-b};(bneq 9).

+ Ta có:

dfrac{p}{2sqrt{p}-1}=dfrac{p(2sqrt{p}+1)}{(2sqrt{p}-1)(2sqrt{p}+1)}

=dfrac{p(2sqrt{p}+1)}{(2sqrt{p})^2-1^2}=dfrac{p(2sqrt{p}+1)}{4p-1}=dfrac{2psqrt{p}+p}{4p-1}

Bài 52 (trang 30 SGK Toán 9 Tập 1)

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

dfrac{2}{sqrt{6}-sqrt{5}};,, dfrac{3}{sqrt{10}+sqrt{7}};,,, dfrac{1}{sqrt{x}-sqrt{y}};,,, dfrac{2ab}{sqrt{a}-sqrt{b}}.

Gợi ý đáp án

+ Ta có:

dfrac{2}{sqrt{6}-sqrt{5}}=dfrac{2(sqrt{6}+sqrt{5})}{(sqrt{6}-sqrt{5})(sqrt{6}+sqrt{5})}

=dfrac{2(sqrt{6}+sqrt{5})}{(sqrt{6})^2-(sqrt{5})^2}=dfrac{2(sqrt{6}+sqrt{5})}{6-5}

=dfrac{2(sqrt{6}+sqrt{5})}{1}=2(sqrt{6}+sqrt{5}).

+ Ta có:

dfrac{3}{sqrt{10}+sqrt{7}}=dfrac{3(sqrt{10}-sqrt{7})}{(sqrt{10}+sqrt{7})(sqrt{10}-sqrt{7})}

=dfrac{3(sqrt{10}-sqrt{7})}{(sqrt{10})^2-(sqrt{7})^2}=dfrac{3(sqrt{10}-sqrt{7})}{10-7}

=dfrac{3(sqrt{10}-sqrt{7})}{3}=sqrt{10}-sqrt{7}.

+ Ta có:

dfrac{1}{sqrt{x}-sqrt{y}}=dfrac{1.(sqrt{x}+sqrt{y})}{(sqrt{x}-sqrt{y})(sqrt{x}+sqrt{y})}

=dfrac{sqrt x + sqrt y}{(sqrt x)^2-(sqrt y)^2}=dfrac{sqrt{x}+sqrt{y}}{x-y}

+ Ta có:

dfrac{2ab}{sqrt{a}-sqrt{b}}=dfrac{2ab(sqrt{a}+sqrt{b})}{(sqrt{a}-sqrt{b})(sqrt{a}+sqrt{b})}

=dfrac{2ab(sqrt a+ sqrt b)}{(sqrt a)^2-(sqrt b)^2}=dfrac{2ab(sqrt{a}+sqrt{b})}{a-b}.

Giải bài tập toán 9 trang 30: Luyện tập

Bài 53 (trang 30 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa) :

a. sqrt{18(sqrt{2}-sqrt{3})^{2}};

b. absqrt{1+dfrac{1}{a^{2}b^{2}}}

c. sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}

d. dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}

Gợi ý đáp án

a. sqrt{18(sqrt{2}-sqrt{3})^{2}};

Ta có:

sqrt{18(sqrt{2}-sqrt{3})^{2}}=sqrt {18}.sqrt{(sqrt 2 - sqrt 3)^2}

=sqrt{9.2}.|sqrt{2}-sqrt{3}|=sqrt{3^2.2}.|sqrt{2}-sqrt{3}|

=3sqrt{2}.|sqrt{2}-sqrt{3}|=3sqrt{2}(sqrt{3}-sqrt{2})

=3sqrt {2.3}- 3(sqrt 2)^2

=3sqrt 6 -3.2=3sqrt{6}-6.

(Vì  2 < 3Leftrightarrow sqrt 2 < sqrt 3 Leftrightarrow sqrt 2 -sqrt 3 <0

Do đó: |sqrt 2 -sqrt 3|=-(sqrt 2 -sqrt 3)=-sqrt 2 +sqrt 3=sqrt 3-sqrt2).

b. absqrt{1+dfrac{1}{a^{2}b^{2}}}

Ta có:

absqrt{1+dfrac{1}{a^{2}b^{2}}}=absqrt{dfrac{a^2b^2}{a^2b^2}+dfrac{1}{a^2b^2}}=absqrt{dfrac{a^2b^2+1}{a^2b^2}}

=abdfrac{sqrt{a^2b^2+1}}{sqrt{a^2b^2}}=abdfrac{sqrt{a^2b^2+1}}{sqrt{(ab)^2}}

=abdfrac{sqrt{a^2b^2+1}}{|ab|}

Nếu ab > 0 thì |ab|=ab

Rightarrow abdfrac{sqrt{a^2b^2+1}}{|ab|}=abdfrac{sqrt{a^2b^2+1}}{ab}=sqrt{a^2b^2+1}.

Nếu ab < 0 thì |ab|=-ab

Rightarrow abdfrac{sqrt{a^2b^2+1}}{|ab|}=abdfrac{sqrt{a^2b^2+1}}{-ab}=-sqrt{a^2b^2+1}.

c. sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}

Ta có:

sqrt{dfrac{a}{b^{3}}+dfrac{a}{b^{4}}}=sqrt{dfrac{a.b}{b^{3}.b}+dfrac{a}{b^{4}}}=sqrt{dfrac{ab}{b^4}+dfrac{a}{b^4}}

=sqrt{dfrac{ab+a}{b^4}}=dfrac{sqrt{ab+a}}{sqrt{(b^2)^2}}=dfrac{sqrt{ab+a}}{|b^2|}=dfrac{sqrt{ab+a}}{b^2}.

(Vì với mọi b ne 0 nên |b^2|=b^2).

d. dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}

Ta có:

dfrac{a+sqrt{ab}}{sqrt{a}+sqrt{b}}=dfrac{(sqrt a)^2+sqrt{a}.sqrt b}{sqrt{a}+sqrt{b}}=dfrac{sqrt a (sqrt a+sqrt b)}{sqrt{a}+sqrt{b}}

=sqrt a.

Bài 54 (trang 30 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):

dfrac{2+sqrt{2}}{1+sqrt{2}};,,, dfrac{sqrt{15}-sqrt{5}}{1-sqrt{3}};,,,dfrac{2sqrt{3}-sqrt{6}}{sqrt{8}-2};

Gợi ý đáp án

* Ta có:

dfrac{2+sqrt{2}}{1+sqrt{2}}=dfrac{(sqrt 2)^2+ sqrt 2}{1+ sqrt 2}=dfrac{sqrt{2}(sqrt{2}+1)}{1+sqrt{2}}

=dfrac{sqrt 2(1+ sqrt 2)}{sqrt 2}=sqrt{2}.

Cách khác:

begin{array}{l} dfrac{{2+ sqrt 2 }}{{1 + sqrt 2 }} = dfrac{{left( {2 + sqrt 2 } right)left( {1 - sqrt 2 } right)}}{{left( {1 + sqrt 2 } right)left( {1 - sqrt 2 } right)}}\ = dfrac{{2.1 - 2sqrt 2 + sqrt 2 - {{left( {sqrt 2 } right)}^2}}}{{{1^2} - {{left( {sqrt 2 } right)}^2}}}\ = dfrac{{2 - 2sqrt 2 + sqrt 2 - 2}}{{1 - 2}}\ = dfrac{{ - sqrt 2 }}{{ - 1}} = sqrt 2 end{array}

Nhận xét: Cách làm thứ nhất phân tích tử thành nhân tử rồi rút gọn với mẫu đơn giản hơn cách thứ hai.

* Ta có:

dfrac{sqrt{15}-sqrt{5}}{1-sqrt{3}}=dfrac{sqrt{3.5}-sqrt{5.1}}{1-sqrt{3}}=dfrac{sqrt{5}.sqrt{3}-sqrt{5}.1}{1-sqrt{3}}

=dfrac{sqrt{5}(sqrt{3}-1)}{1-sqrt{3}}=dfrac{-sqrt{5}(1-sqrt{3})}{1-sqrt{3}}=-sqrt{5}.

+ Ta có:

dfrac{2sqrt{3}-sqrt{6}}{sqrt{8}-2}=dfrac{(sqrt 2)^2.sqrt 3-sqrt 6}{sqrt{4.2}- 2}

=dfrac{sqrt 2.(sqrt 2.sqrt 3)-sqrt 6}{2sqrt 2 -2}=dfrac{sqrt2.sqrt{6}-sqrt 6}{2(sqrt{2}-1)}

=dfrac{sqrt{6}(sqrt{2}-1)}{2(sqrt{2}-1)}=dfrac{sqrt{6}}{2}.

+ Ta có:

dfrac{a-sqrt{a}}{1-sqrt{a}}=dfrac{(sqrt a)^2-sqrt a .1}{1-sqrt a}=dfrac{sqrt{a}(sqrt{a}-1)}{1-sqrt{a}}

=dfrac{-sqrt{a}(1-sqrt{a})}{1-sqrt{a}}=-sqrt{a}.

+ Ta có:

dfrac{p-2sqrt{p}}{sqrt{p}-2}=dfrac{(sqrt p)^2-2.sqrt{p}}{sqrt{p}-2}=dfrac{sqrt{p}(sqrt{p}-2)}{sqrt{p}-2}=sqrt{p}.

Bài 55 (trang 30 SGK Toán 9 Tập 1)

Phân tích thành nhân tử (với a, b,x, y là các số không âm)

a. ab+bsqrt{a}+sqrt{a}+1

b, sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}}

Gợi ý đáp án

a. ab+bsqrt{a}+sqrt{a}+1

Ta có:

ab+bsqrt{a}+sqrt{a}+1=(ab+bsqrt{a})+(sqrt{a}+1)

=(ba+bsqrt{a})+(sqrt{a}+1)

=[(bsqrt a).sqrt a+ bsqrt a.1]+(sqrt a + 1)

=bsqrt{a}(sqrt{a}+1)+(sqrt{a}+1)

=(sqrt{a}+1)(bsqrt{a}+1).

b, sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}}

Ta có:

sqrt{x^{3}}-sqrt{y^{3}}+sqrt{x^{2}y}-sqrt{xy^{2}}

=[(sqrt x)^3-(sqrt y)^3]+ (sqrt{x.xy}-sqrt{y.xy}) =(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2]

+ (sqrt{x}.sqrt{xy}-sqrt{y}.sqrt{xy})

=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2] + sqrt{xy}.(sqrt{x}-sqrt{y})

=(sqrt x-sqrt y).[(sqrt x)^2 + sqrt x.sqrt y+(sqrt y)^2+sqrt{xy}]

=(sqrt x-sqrt y).[(sqrt x)^2 + 2sqrt x.sqrt y+(sqrt y)^2] =(sqrt x-sqrt y).(sqrt x+sqrt y)^2.

Bài 56 (trang 30 SGK Toán 9 Tập 1)

a. 3sqrt{5};,,,2sqrt{6};,,,sqrt{29};,,, 4sqrt{2}

b. 6sqrt{2};,,, sqrt{38};,,,3sqrt{7};,,, 2sqrt{14}.

Gợi ý đáp án

Sắp xếp theo thứ tự tăng dần:

a. 3sqrt{5};,,,2sqrt{6};,,,sqrt{29};,,, 4sqrt{2}

Ta có:

left{ matrix{ 3sqrt 5 = sqrt {{3^2}.5} = sqrt {9.5} = sqrt {45} hfill cr 2sqrt 6 = sqrt {{2^2}.6} = sqrt {4.6} = sqrt {24} hfill cr 4sqrt 2 = sqrt {{4^2}.2} = sqrt {16.2} = sqrt {32} hfill cr} right.

Vì: 24 < 29 < 32 < 45 Leftrightarrow sqrt{24}<sqrt{29}<sqrt{32}<sqrt{45}

Leftrightarrow 2sqrt{6}<sqrt{29}< 4sqrt{2}< 3sqrt{5}

b. 6sqrt{2};,,, sqrt{38};,,,3sqrt{7};,,, 2sqrt{14}.

Vì: 38 < 56 < 63 <72Leftrightarrow sqrt{38}<sqrt{56}<sqrt{63}<sqrt{72}

Leftrightarrow sqrt{38}< 2sqrt{14}<3sqrt{7}< 6sqrt{2}

Bài 57 (trang 30 SGK Toán 9 Tập 1)

Hãy chọn câu trả lời đúng.

sqrt {25x} - sqrt {16x} = 9 khi x bằng

(A) 1;

(B) 3;

(C) 9;

(D) 81.

Hãy chọn câu trả lời đúng.

Gợi ý đáp án

Ta có:

sqrt{25x}-sqrt{16x}=9

sqrt{5^2.x}-sqrt{4^2.x}=9 Leftrightarrow 5sqrt{x}-4sqrt{x}=9

Leftrightarrow (5-4)sqrt{x}=9 Leftrightarrow sqrt{x}=9

Leftrightarrow (sqrt{x})^2=9^2 Leftrightarrow x=81

Chọn đáp án D. 81

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button
You cannot copy content of this page